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A closed-form stress analysis of an adhesively-bonded lap joint subjected to spatially- 
varying in-plane shear loading is presented. The solution, while similar to Volkersen's 
treatment of tension loaded lap joints, is inherently two-dimensional and, in general, 
predicts a multi-component adhesive shear stress state. A finite difference numerical 
solution of the derived governing differential equation is used to verify the accuracy of 
the closed-form solution for a joint of semi-infinite geometry. The stress analysis of a 
finite-sized doubler is also presented. This analysis predicts the adhesive stresses at the 
doubler boundaries, and can be performed independently from the complex stress state 
that would exist due to a patched crack or hole located within the interior of the doubler. 
The analytical treatment of lap joints under combined tension and shear loading is now 
simplified since superposition principles allow the stress states predicted by separate 
shear and tension cases to be added together. Applications and joint geometries are 
discussed. 

Keyword.$: Shear-load; Bonded joint; Doubler; Composite adherend; Crack patch; 
Closed-form analysis 

1. INTRODUCTION 

Adhesive bonding has been applied successfully in many technologies. 
Foremost in applications where primary loaded structures rely on 
adhesive bonding are aircraft and space structures. While bonding 
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2 H.  KIM AND K. T. KEDWARD 

in large and small commercial aircraft has been practiced quite widely 
in Europe (sailplanes in Germany, SAAB 340 [l] and EXTRA 
EA-400 [2]), extensive adhesive bonding is being used in the United 
States for the assembly of newly-emerging small all-composite aircraft 
structures (Cirrus SR20 and Lancair Columbia 300) for reasons 
related to performance and cost. 

The analytical treatment of a bonded lap joint where the adherends 
are loaded in tension (see Fig. 1 )  has been considered extensively by 
many authors. Hart-Smith [3,4] extended the shear lag theory that 
was presented by Volkersen [5] to include adhesive plasticity. Goland 
and Reissner [6] and Oplinger [7] accounted for adherend bending 
deflections to predict the peel stress in the adhesive. Tsai, Oplinger and 
Morton [8] provided a correction for adherend shear deformation, 
resulting in a simple modification of Volkersen’s theory-based 
equations. All of these analytical treatments are formulated per unit 
width of the specimen, which implies that the predicted adhesive stress 
is independent of variations of loading through the width of the joint 
(x-direction in Fig. 1). An extension of these solutions can be applied 
to the case of spatially-varying tensile loading, as shown in Figure 1, 
by performing the analysis using the value of tensile stress resultant at 
any particular x-axis location. The tension-loaded lap joint analysis is 
presented in Appendix A. 

Adhesively-bonded lap geometries loaded by in-plane shear (see 
Fig. 2) have been discussed by Hart-Smith [4], van Rijn [2], and the 
Engineering Sciences Data Unit [9]. The authors of these works 
indicate that shear loading can be analytically accounted for by simply 

Tensile Load 
Profile Ny(x) 

FIGURE 1 Tension loaded lap joint. 
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STRESS ANALYSIS OF BONDED JOINTS 3 

(a) Sern-lrifiiiite Lap .Joint  

(b) Finite Sized Doubler Bonded onto Plate with Kernote Shear Loading N , ,  

FIGURE 2 Adhesively-bonded assemblies of semi-infinite and finite size. 

replacing the adherend Young's moduli in the tensile-loaded lap joint 
solution with the respective adherend shear moduli. This approach is 
rigorously correct for only the case of spatially-constant Nxy load 
applied to joints which are semi-infinite, as shown in Figure 2a. 

When the geometry is finite in size (see Fig. 2b), an analytical 
treatment that is more comprehensive than that suggested by Hart- 
Smith [4], van Rijn [2], and the Engineering Sciences Data Unit [9] is 
needed in order to account for adhesive stresses which would exist at  
the bond terminations. Thus, the objective of the theoretical work 
presented herein is to address the shear-loaded lap joint problem in 
more general terms by allowing the applied in-plane shear load to vary 
in the spatial coordinates, and by accounting for a joint geometry of 
finite size. Closed-form analytical solutions are developed for single- 
and double-lap joint configurations subject to general in-plane shear 
loading. It should be noted that the solution of this problem using 
Finite Element Analysis (FEA) is difficult due to the inherent three- 
dimensional nature of the joint geometry and shear loading condi- 
tions. Since three-dimensional elements need to be used in modeling 
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4 H.  KIM A N D  K. T. KEDWARD 

shear transfer across a lap joint, creating a mesh having enough 
element refinement to capture the high stress gradients in the thin 
adhesive layer can easily result in a FEA model of formidable size. 
In comparison, a closed-form solution to this problem serves as a 
computationally efficient tool that is useful for design and analysis. 

2. STRUCTURAL EXAMPLES 

Examples of structures in which shear loading can challenge a bonded 
lap joint are shown in Figures 3 to 7. Figure 3 shows a generic section 
of an adhesively-bonded fuselage assembly typical of small aircraft. 
The fuselage halves are joined at the fuselage centerline, typically 
through a joggled lap joint, as shown in the figure inset. Other joint 
configurations might include the use of a splice strap. Shear loads are 
transmitted by this joint any time torsion is carried by the fuselage, 
such as when the aircraft rudder is used during maneuvers or when 
side gusts load the tail. Note that the fuselage cross-section decreases 
in moving aft, so that for a given applied torque load at the tail, the 
shear stress in the fuselage skin increases in the direction of shrinking 
cross-section. Also detailed in Figure 3 is a bonded joint connecting an 
internal shelf structure to the outer fuselage shell. When the fuselage 
skin carries torsion, shear flow is introduced into the shelf through the 
bonded clips, in the manner of a two-cell torsion box. Finally, a 
bonded doubler is pointed out in Figure 3. Doublers are used where a 
local increase in wall thickness is needed, such as for attaching an 

Bonded 
Doubler 

.. c 

-splice strap singe Lap- 
- 
* 

Internal Structure Joined 
to Outer Shdl 

U 

FIGURE 3 Typical aft section of small aircraft bonded fuselage. 
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STRESS ANALYSIS OF BONDED JOINTS 5 

(I)) Longitudiiial 

FIGURE 4 Circumferential and longitudinal tubular lap joints. 

antenna or carrying a concentrated load. This doubler could poten- 
tially disbond when significant loads are carried by the fuselage skin. 

The joining of tubular structures is another case in which shear 
loading is applied across a lap joint. The circumferential joint under 
torsion loading, shown in Figure 4a, has been treated analytically 
by Adams and Peppiat [lo]. For the circumferential joint orientation, 
the analysis is one-dimensional, i.e., adhesive stress is independent of 
circumferential position. The theory presented in this paper applies to 
the circumferential joint case for thin-walled structures. This thin- 
walled condition implies that the torsion-induced shear stress in the 
adherend has negligible through-thickness variation. Additionally, the 
theory presented herein is applicable to the thin-walled longitudinal 
joint geometry as shown in Figure 4b. This structure can be subjected 
to an axially-varying running torque or end-applied torque. Both the 
circumferential and longitudinal joint geometry can be found in 
aircraft structures, such as the large transport aircraft fuselage barrel 
studied under the Primary Adhesively Bonded Structure Technology 
(PABST) program [l]. 
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6 H. KIM A N D  K .  T. KEDWARD 

Inner Adherend 

Outer Adherend 

-- 

Torque Transmitted 
hrough Face-Bonded 

Circular Plate as 
Shear Stress T ; ~  

FIGURE 5 Torsion-loaded circular bonded joint. 

Another torsion-loaded geometry, shown in Figure 5 ,  is a face- 
bonded circular lap joint. Here torque load is transferred through an 
interface plate to an outer circular plate. This geometry results in an 
axisymmetric adhesive stress profile. Note that the shear stress 
resultant transmitted through the joint, Nro, is dependent upon the 
radius, r.  

Figure 6 depicts a wing box of generic construction [ l l ]  using 
bonded angle clips to hold shear webs in place. When the wing is 
subjected to aerodynamic lift loads and torsion during maneuvers, 
shear stresses are introduced into the shear webs through the bonded 
angle clips. Observe in the figure that the regions where the clips are 
bonded to the shear webs are essentially double-lap joints. This 
structure can be idealized as a bonded-construction I-beam carrying 
pressure load, as shown in Figure 7. Simple structural analysis treat- 
ments are available [l 1, 121 to determine the shear load transferred 
through cut A-A in the figure for use in a subsequent bonded-joint 
analysis. For a uniform pressure load acting along the length of a 
constant cross-section beam, as in Figure 7, the shear load in the web 
varies linearly along the width of the joint (Le., along the length of the 
beam). Large cutouts in the shear web and concentrated point loads 
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STRESS ANALYSIS OF BONDED JOINTS 

/r Shear Web 

FIGURE 6 Shear webs forming bonded wing box assembly. 

Pressure 
Loading 

FIGURE 7 Constant cross-section I-beam under uniform pressure load. 

applied along the length of  the beam would introduce sharp variations 
in the shear loading carried by the clips. The theory presented in this 
paper is capable of accounting for these variations. 

3. GOVERNING EQUATION 

The derivation of the differential equation governing the behavior of 
a shear-loaded adhesive joint is presented in this section. While 
analogous to the tension-loaded case which results in a one- 
dimensional ordinary differential equation, the end result for the 
shear case is a two-dimensional partial differential equation. 

Consider the shear-loaded bonded lap joint shown in Figure 8. The 
differential element in Figure 8 shows the in-plane shear stresses acting 
on the inner and outer adherends, riy and r.$ as well as the two 
components of adhesive shear stress, r,”, and G7. This analysis is 
applicable to both the single-and double-lap joint geometries which 
are illustrated in Figure 9. The double-lap case is limited to the 
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8 H. KIM A N D  K. T. KEDWARD 

Out., 
Adherend 

1h.r 
Adherend 

FIGURE 8 Lap joint bonded shear panel and differential element showing stresses in 
adhesive and adherends. 

Outer Adherend 
t,,, z:”, q” 

Single Lap 

Double Lap 

FIGURE 9 Single- and double-lap joint geometry. 

condition of geometric and material symmetry about the center of the 
inner adherend, so that the problem is then identical to the single-lap 
case. Alternatively, if both outer adherends have equivalent stiffness, 
i.e., same product of shear modulus and thickness, then the double-lap 
joint can still be treated as symmetric. Assumptions made in the 
derivation are: 

(1) Constant bond and adherend thickness. 
(2) Uniform distribution of shear strain through the adhesive thickness. 
(3) Adhesive carries only out-of-plane stresses while adherends carry 

(4) Linear elastic material behavior. 
( 5 )  Deformation of the adherends in the out-of-plane direction is 

only in-plane stresses. 

negligible. 

The lap-jointed shear panel, shown in Figure 8, has an applied shear 
stress resultant, Nxy,  which is continuous through the overlap region, 
and at any point must equal the sum of the product of each adherend 
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STRESS ANALYSIS OF BONDED JOINTS 9 

r 
.11 Y 

Adhesive-Side 
Face of Outer 
Adherend 

t -dY 

FIGURE 10 Adhesive and adherend stresses acting on differential element of outer 
adherend. 

shear stress with its respective thickness. 

N,, = riyti + r,9,to (1) 

Force equilibrium performed on a differential element of the outer 
adherend, shown in Figure 10, results in relationships between the 
adhesive stress components and the outer adherend shear stress. 

CF,  = -r&todx + t,dx - r:zdxdy = 0 

The adhesive shear strains are written based on the assumption of 
constant shear strain across the thickness of the adhesive. 

Taking the y -  and x-derivatives of f 7  and y&. respectively, 

h i 7  -1 duo ay,", - 
a~ GaaY t a  aY - ( 2) - 
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10 H. KIM A N D  K. T. KEDWARD 

Adding the resulting Eqs. (6 )  and (7), one gets 

Finally, combining Eq. (8) with Eqs. ( I )  to (3), and noting that 

results in a partial differential equation governing the shear stress in 
the outer adherend. 

(12) and (13) w i t h A 2 = 2 ( & + & )  and co=- GaNxy 
G&t,tit, 

The adhesive shear stresses, eZ and qZ, can be obtained from the 
relationships given by Eqs. (2) and (3) once a solution to Eq. (11) is 
determined. The governing equation is similar to the one-dimensional 
equation governing the behavior of a tension-loaded bonded joint (see 
Appendix A). Note, however, that for the shear-loaded case the 
governing equation is in two dimensions, and there are now, in 
general, two components of adhesive shear stress. 

This derivation is rigorously correct for the case when the applied 
loading, Nxy, is constant with respect to the x- and y-coordinates. For 
the case when Nxy has gradients in the x- and y-directions, there will 
generally exist complementary direct stress resultants, N ,  and Ny,  with 
gradients in the x- and y-directions, respectively. This point is clear 
when considering the equilibrium equations of a flat plate 
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STRESS ANALYSIS OF BONDED JOINTS 11 

where applied surface tractions qx and q,  are zero. For example, Eq. 
(15) says that for Nxy being a function behaving linearly in x, in order 
for equilibrium to be maintained, N ,  must be linear in y (for qy = 0). 
The existence of these additional stress resultants, not accounted for in 
the derivation of Eq. ( I  I), will contribute additional stresses in the 
adhesive. For many engineering structures, such as the shear webs 
shown in Figures 6 and 7, the gradients of Nxy in the shear web are 
small enough so that the influence of these equilibrium-maintaining 
stress resultants, N ,  and N,,, on the derivation of the governing 
equation can often be neglected. If  the magnitudes of N ,  and N y  are 
too great to be treated as negligible, their effect can be accounted for 
through a separate tension (or compression) loaded bonded joint 
analysis (see Appendix A). The results of this analysis can then be 
superposed onto the results of the shear-loaded joint analysis. 

Cases where a gradient in Nxy  can exist without complementary N ,  
or N,, resultants can be found in flat structures having surface tractions 
qx and q,, present, and in torsion-loaded thin-walled structures of 
varying closed cross-section, such as the generic fuselage depicted in 
Figure 3. In this example, the structure can be idealized as a conical 
shell, as illustrated in Figure 11. For an applied end-torque, the shear 
flow in the wall, Nss, will vary along the meridional direction, s, solely 
due to the effects of changing cross-section geometry. 

Shear Stress Resultant 
in Wall, N,, 

--- I 
I 

FIGURE 1 I Conical shell with torsion load. 
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12 H. KIM AND K. T. KEDWARD 

The existence of an equilibrium-maintaining hoop stress is not 
necessary in this case, as can be confirmed by inserting Eq. (1  6) into 
the &direction equilibrium equation for a conical shell [I31 with no 
surface tractions or body forces present. 

4. SOLUTION FOR SEMI-INFINITE CASE 

This section presents the solution to the governing Equation (1 1) for 
the case of a semi-infinite joint. This type of joint does not consider the 
termination of the joint in the width, or x-direction (see Fig. 2a), and is 
oriented such that the length of the joint, 2c, runs parallel to the y-axis 
coordinate. 

A closed-form solution is obtained for the condition in which the 
loading Nxy smoothly varies in the x-direction. An example of this 
type of loading condition is depicted in Figure 12. Since the governing 
equation has been formulated using differential scale elements, the 

I+\ _____. 

':i-----7-, 

- -  -'..... I 

~ Lap Jan1 Region 
Modeled lo Right j--, 

0 
Theoretical Shear Diaqram 

0 
Actual Slwar Diagram 

._._ _II......_.. 

-Y 
- c  0 + c  

FIGURE 12 Lap-jointed shear web under spatially-varying shear load. 
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STRESS ANALYSIS OF BONDED JOINTS 13 

assumption is made that the smoothly-varying load Nxy can be locally 
represented as a linear function in x (e.g., by using a Taylor Series 
expansion). After obtaining the solution, this linear assumption is 
relaxed, and the resulting closed-form expressions will be shown, 
through comparison with a numerical calculation, to remain valid for 
non-linear functions as well. 

Applying the assumption that Nxy is represented by a linear function 
in the x-direction, and furthermore Nxy is also constant in the 
y-direction, a solution to Eq. ( 1  1) having a form identical to that of 
Volkersen’s one-dimensional tension-loaded case can be assumed. 

c o  riy = A, cosh Xy + Bo sinh Xy + - 
A2 

where X2 and C, are given by Eqs. (12) and (13). Note that C, is 
directly proportional to Nxy and is, thus, considered to be linear in x. 
A, and B, are unknown terms which can be functions of x, and it is 
assumed that, like C,, they are no higher than linear functions in x. 
The solution obtained will confirm this assumption by showing A, and 
B, to be directly proportional to Nxv .  Substituting Eq. (18) into the 
governing Eq. (1 1) checks that this is a valid solution. 

Using the following boundary conditions (see joint geometry in 
Fig. 9), 

r:y = 0 at  y = -c (19) 

r;y = - N x ~  at y = c 
to 

the unknown terms can be determined. 

B -  N X Y  

- 2t, sinh Xc 

The adhesive shear stress components can now be calculated using 
Eqs. (2), (3) and (1 8). 

dT0 
r;z = to -3 = t,X(A, sinh Xy + B, cosh XY) 

8 Y  
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14 H .  KIM A N D  K. T. KEDWARD 

(c2),,,,= toz aT0 = to (z aA0 coshXy + - aB0 sinh Xy + Ls) (24) 
a x  X2 a x  

For the case of constant NxY, the stress component (G2),,,, is zero since 
A,, B, and C, would be constants. For a smooth x-varying load 
function NxY(x), the stress component T& simply varies in direct 
proportion to the loading, while Eq. (24) calculates a non-zero 
adhesive stress component (G2),,,? to exist in order to satisfy force 
equilibrium in the y-direction. This, however, is an incomplete result 
since it does not account for the previously-discussed equilibrium- 
maintaining stress resultant N y  that would exist for flat plate structures 
having aNx,,/ax#O. The Ny stress resultant not only maintains force 
equilibrium in the y-direction, but also produces an adhesive stress 
(GJ,,,,. Therefore, in order to calculate the T ! ~  adhesive stress 
completely, both contributions arising from the gradient in Nx,, and 
the presence of N y  must be added together. 

In many engineering structures, the N y  stress resultant magnitude is 
small when compared with the Nxy loads, resulting in the T ; ~  stress 
component being generally much smaller than ez. 

Finally, note that analytical solutions for the semi-infinite bonded 
joint can also be determined for the case of y-varying Nxy loading. 
Equation (1 8) is the general solution when Nxy is independent of y. By 
assuming that Nxy has at most a linear relationship in x, the governing 
Equation (1 1)  can be treated as an ordinary differential equation with 
independent variable y. The Method of Undetermined Coeficients [ 141 
can be used to formulate the solution for certain cases where Nxy has a 
functional dependence on the y-coordinate. This solution is summar- 
ized in Appendix B. 

4.1. Example and Validation by Finite Difference 

The closed-form solution developed for a semi-infinite joint is now 
demonstrated for the example of a bonded I-beam shear web, as 
illustrated in Figure 12. A particular interest exists to test the solution 
for a shear load N J x )  that is arbitrary and smoothly-varying (i.e., not 
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STRESS ANALYSIS OF BONDED JOINTS 15 

a linear function of x). To this end, a shear-loading function is chosen 
to represent the transition in shear flow in the web in the region 
adjacent to an applied point load, as shown in Figure 12. 

NV =4.38  cos - + 3  N/mm (3 
This function is valid in the width-direction of the joint in the region 
0 < x < a and is constant in the y-direction. For x < 0, Nxy is constant 
at 17.5N/mm, and for x > a ,  Nxy is constant at 8.75N/mm. The 
calculation is performed using the same joint geometry for two 
laminated composite adherend cases: (i) woven glass/epoxy, and (ii) 
unidirectional standard modulus carbon/epoxy. Both of these 
symmetrically-laminated composite adherends have a f 45" ply 
orientation content of 50%, with the remainder of the plies oriented 
at 0" and 90" in equal proportion (25% each). Furthermore, the 
thickness and material of both the inner and outer adherends are the 
same. This condition is a special case where the stiffness of the inner 
and outer adherends are the same. A joint with matching adherend 
stiffness is referred to as a balanced joint. Since stiffness is computed 
as the product of modulus and thickness, it is conceivable that a 
composite joint can be balanced with respect to shear loading, but not 
balanced with respect to tension or compression loading. 

The geometry of the joint and the material properties of the 
adherends and adhesive are given in Table I .  

The 7x9. stress in the outer adherend and the r,", adhesive stress are 
calculated using the closed-form solution given by Eqs. ( I  8) and (21) to 
(23). These results are compared with a finite difference numerical 

TABLE I Semi-infinite joint geometry and material properties 

Joint parameter Symbol 

Length of bond overlap 2c 
Joint width over which loading varies a 
Inner and outer adherend thickness ti ,  1, 
Adhesive thickness 1, 

Adhesive shear modulus Go 
Glass/epoxy laminate effective shear modulus (case 1 ) 
Glass/epoxy laminate effective tensile modulus (case I )  
Carbonlepoxy laminate effective shear modulus (case 2) 

G:y. G:y 
E;, 

Gkv, G:,, 

Value 

12.7mm 
25.4mm 

2.54mm 
0.254mm 
1 . 1  GPa 
6.5 GPa 

11.2 GPa 
21.4GPa , ,  

Carbon/epoxy laminate effective tensile modulus (case 2) E;, 5 82.7GPa 
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16 H. KIM A N D  K. T. KEDWARD 

solution of the governing Equation (I  1). The finite difference model was 
constructed to represent the outer adherend in the region of the bond 
overlap and over which the loading varied (- c < y < c, 0 < x < a). The 
grid spacing was 0.508mm in the x-direction, and 0.127mm in the 
y-direction. The finer spacing in the y-direction is necessary to capture 
the high stress gradients existing along this direction, particularly at the 
termination of the joint overlap, at y = f c. 

For the materials and geometry given in Table I ,  the adherend and 
adhesive stresses are computed, and normalized by a running average 
shear stress (k., average depends on x-position). The average shear 
stress in the outer adherend can be calculated by recognizing that each 
adherend carries a proportion of the applied load which is dependent 
upon the stiffness of the outer adherend relative to the inner. 

The average inner adherend shear stress can be calculated by replacing 
G& in the numerator of Eq. (27) with GL. The average adhesive shear 
stress acting in the x-z direction is simply the shear load transferred 
across the joint divided by the overlap length. 

The normalized adherend and adhesive shear stress profiles are shown 
in Figures 13 and 14 for both the glass/epoxy and carbon/epoxy 
adherend cases. In these figures, the closed-form solution is referred to 
by the abbreviation CF, and the finite difference results by FD. The 
stresses are plotted along the path x = 0.2q  which is a location away 
from a region of nearly-constant applied loading (e.g., x = 0) ,  and for 
which the loading function is nonlinear in x (h., a2N,,/ax2 # 0). 
These criteria were used to select the location for solution comparison 
in order to demonstrate that the solution developed is valid for any 
general, smooth, x-varying load function. 

Figures 13 and 14 show that the closed-form solution is nearly 
identical to the finite difference results. Note the different rate of load 
transfer between the two joint materials. The carbon/epoxy adherend 
has a significantly higher shear modulus, resulting in a more gradual 
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2 

0 .5  

0 
- 1  -0.5 0 0 . 5  1 

Y I C  

FIGURE 13 r,oY Adherend in-plane shear stress, ( T : ~ ) ~ ~ ~  = 3.28MPa. 

5 

4 

1 

0 

FIGURE 14 e2 Adhesive shear stress, 1.31 MPa. 
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18 H. KIM AND K. T. KEDWARD 

transfer of shear loading between the two adherends (see Fig. 13). The 
shear stress in the inner adherend, 7iY, can be obtained from Eq. (1) 
once the outer adherend stress, T:~, is known. For a balanced joint, the 
inner adherend shear stress is simply a mirror image of Figure 13 
about the y = 0 axis. 

The adhesive shear stress eZ, shown in Figure 14, is a maximum at the 
edges of the joint at y = f c. This figure shows that a joint of identical 
geometry with more compliant (glass/epoxy) adherends results in 
significantly higher shear stress peaks. Conversely, a joint with stiffer 
adherends (carbon/epoxy) carrying the same loads has a higher 
minimum stress at the center of the overlap, and may need to be 
designed with a greater overlap length so as to maintain a low stress 
“elastic trough” that is long enough to avoid creep [I51 in the adhesive. 
In joint design, it is necessary to address both the maximum and 
minimum stress levels in the adhesive, the former to avoid initial (short 
term) failures near the joint extremities, the latter to resist viscoelastic 
strain development under long-term loading. For an unbalanced joint 
(e.g., to= lSmm),  one edge of the joint (at y = +c) would have a 
higher value of shear stress than the other side (at y = - c). 

As previously discussed, the adhesive stress component T ; ~  was said 
to be small enough so that it can be neglected. To justify this 
statement, the peak values of qZ are calculated using Eq. (25) and 
compared with the peak values of T,”,. For this example problem, the 
peak values of qZ occur along x = a / 2 ,  since this is the location 
where the maximum gradient in the load function, given by Eq. (26), 
exists. In order to calculate 7yazZ, the stress resultant N y  must be known. 
Using Eqs. (1 5) and (26), and assuming N,, to be zero at y = 0, N y  at 
x = 4 2  can be determined to be 

Using the tension-loaded joint solution described in Appendix A, and 
for the boundary conditions $ = 0 at y =  -c ,  and $ = Ny(c)/tU at 
y = c, an expression describing the N ,  contribution to the qz stress 
is determined. 

sinh Xoy N (c) Flc cosh X,y 
cosh X,c + (k - T )  sinh X.,] 
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STRESS ANALYSIS OF BONDED JOINTS 19 

where A, is given by Eq. (A2), and 

Profiles of (Gz),,,q, (T~~),,,,, and the total solution for Gz, as expressed 
by Eqs. (24), (30) and (25), respectively, are plotted in Figure 15 for the 
glass/epoxy joint case. It is clear that, in order to obtain an accurate 
prediction for G2, both components contributing to Eq. (25) must be 
included. Ignoring one contribution can result in a dramatic departure 
from the total T;~  solution, as well as result in a G2 stress prediction 
which violates assumption (2) of the derivation. The validity of this 
last statement can be confirmed by computing the (<z)Nq and (<z)Ny 

stresses with reference to the inner adherend stresses ~i~ and <, 
respectively. In order for assumption (2) to hold, the adhesive stress 
profiles predicted relative to the inner and outer adherends must be 
identical to each other. This result is only achieved for the total 
solution, as expressed by Eq. (25). 

Finally, a comparison shows that the maximum value of ~ y a Z  in 
Figure 15 is only 9% of the peak value of c2 in Figure 14, despite the 

1 

0.5 
m a z 
m Z  
I? 

0 

-0.5 

-1 -0 5 0 0.5 1 

YIC 

FIGURE 15 Adhesive shear stress for glass/epoxy semi-infinite joint. 
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20 H. KIM AND K. T. KEDWARD 

high gradient of Nxy in the x-direction. This confirms the previously- 
made statement that the GZ stress component is small relative to eZ 
and can usually be neglected. 

4.2. Validation by Finite Element Analysis 

Further validation of the closed form solution is demonstrated by 
comparison of the adhesive shear stress predicted by Eq. (23) with FEA 
results. Consider the system shown in Figure 16. Here a lap-jointed 
aluminum panel of dimensions, support, and loading configuration 
shown in the figure produces a region of approximately uniform shear 
stress resultant Nxy away from the free edge. The overlap dimension 
of the panel is 2c = 12.7 mm, the adherends have thickness t i=  to = 
1.016mm, and the bondline thickness is t ,  = 0.508 mm. The Young’s 

FIGURE 16 Shear stress resultant profile in lap-jointed aluminum panel. 
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STRESS ANALYSIS OF BONDED JOINTS 21 

modulus of the aluminum is 68.9GPa, and the shear modulus of the 
adhesive is G, = 1.46 GPa. Also in Figure I6 is the FEA mesh used for 
analysis. Note that solid elements needed to be used in modeling the 
joint due to the nature of applying shear loading to a lap joint geometry. 
In contrast, tension-loaded joints can often be analyzed using two- 
dimensional FEA models. 

The applied load F= 623 N was chosen such that a theoretically- 
constant (by simple Strength of Materials calculation) shear flow in the 
web of 17.5N/mm exists. The FEA prediction of Nry, plotted in 
Figure 16 as a function of the x- and y-directions, reveals a mean shear 
flow of 18.7N/mm that is approximately constant over the hatched 
region (see Fig. 16) away from the free edge. This value of Nxy = 18.7 N/ 
mm is used as the loading for the closed form prediction of adhesive 
shear stress (Eq. (23)) along the path A-B indicated in Figure 16. 
Figure 17 plots the FEA and closed form predictions of T,", along path 
A-B. The closed form solution over-predicts the peak shear stress by 
less than 2%. It is clear from the comparison shown in Figure 17 that 
the closed form solution provides an accurate prediction of adhesive 
shear stress. Additionally, the closed form equations provide a solution 
at  much less computational cost than FEA. 

5 I I I 

lor  Aluminum Joint 

0 
-1 0 -0 5 0 0  0 5  1 0  

y lc  at x = Li2 

I I I 

FIGURE 17 Comparison of adhesive shear stress predicted by FEA and closed form 
solution; T& plotted along path A-B in Figure 16. (See Color Plate I). 
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22 H .  KIM A N D  K. T. K E D W A R D  

5. SOLUTION FOR FINITE CASE 

The previous section treated the case of a semi-infinite joint sub- 
jected to a gradient loading. In this section, a closed form solution of 
the governing Equation (1 1) is presented for the case of a finite-sized 
doubler bonded to a base structure that is subjected to remotely 
applied in-plane shear loading, as shown in Figure 2b. A doubler is 
often bonded onto a structure to serve as a reinforced hard point for 
component attachment, such as an antenna on an aircraft fuselage, or 
to increase thickness at local areas for carrying loads through holes, 
e.g., a bolted attachment. In this case, the bonded doubler patch can 
be considered as the outer adherend, and the plate to which it is 
adhesively joined, the inner adherend. Since the doubler is finite in size 
along both the x- and y-axes, a simple solution approach can not be 
employed such that the governing equation can be treated as an 
ordinary differential equation. Here the full partial differential 
equation must be solved. The rectangular bonded doubler is a parti- 
cular configuration for which an assumed 7:: stress function can be 
chosen to satisfy both the boundary conditions of the problem (7;: = 0 
at x = 0 ,  a and y = 0 , b )  and the governing equation. A double Fourier 
sine series satisfies both of these conditions. 

mnx nny 0 3 0 0  

7; = C t] Am, sin - sin 
a m=l n= l  

The Fourier coefficient A,, is determined such that the governing 
Equation (1  1) is satisfied. To achieve this, the nonhomogeneous term 
of the governing equation, C,, must also be represented by a double 
Fourier sine series. 

0 0 0 3  mrx . nny 
s'n b C, = 7, c,, sin - 

U m=l n=l 
(33) 

where C,, is the Fourier coefficient in Eq. (33) and is calculated by 

(34) 
mnx nny 

U h 

h 

C,,,, = 2 la C,(x,  y)sin ~ sin ~ dydx 

In Eq. (34), the term C,(x,y) within the double integral is the 
nonhomogeneous term of the governing Equation (1 l), and should not 
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STRESS ANALYSIS OF BONDED JOINTS 23 

to be confused with the C ,  on the left hand side of Eq. (33). Note that 
spatially-varying N,,(x,y) loading is accounted for through the C,(x,y) 
term in Eq. (34). For non-constant Nxv ,  the necessary N ,  and N y  
stress resultants can be determined from the plate equilibrium Eqs. 
(14) and (15) in a manner similar to that presented in the previous 
sect ion. 

Inserting Eqs. (32) and (33) into the governing Equation (1 I), the 
Fourier coefficient of Eq. (32) can now be solved for. 

(35) 
cm 

Am,  = 
(.rrm/a)2 + ("n/h)* + A2 

The series solution given by Eq. (32) provides the in-plane shear stress 
distribution within the outer adherend. The adhesive shear stress 
components, T,", and T ; ~ ,  are calculated using Eqs. (2) and (3). Note 
that in the finite-sized joint case, the T~ stress is significant in 
magnitude at two opposing doubler boundaries, x = 0 and x = a, even 
for a constant N,, applied load. 

y7. 

5.1. Example and Applications 

An example calculation is now presented. Consider a thin glass/epoxy 
structure (inner adherend) carrying shear load. A carbon/epoxy 
doubler (outer adherend) is bonded to the structure. The geometry 
of this example problem is listed in Table 11. The material properties 
used in the calculation are taken from Table I .  Applied shear load is a 
constant NX." = 17.5 N/mm. 

The results of the calculation are shown by the three-dimensional 
stress surface plots in Figures 18 to 20. In Figure 18, the in-plane shear 
stress T& in the doubler is plotted. The plots correctly show that this 

TABLE 11 Finite-sized doubler geometry 

Doubler parameter Symbol Value 

Length of doubler in x-direction a 127 mm 
Length of doubler in y-direction b 76.2mm 
Inner adherend thickness; glass/epoxy base structure ti 1.27mm 
Outer adherend thickness; carbonlepoxy doubler 10 2.54mm 
Adhesive thickness 1, 0.508 mm 
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24 H. KIM A N D  K. T. KEDWARD 

FIGURE 18 Adherend shear stress Cy in doubler. (See Color Plate 11). 

FIGURE 19 Adhesive shear stress <?. (See Color Plate 111). 

stress goes to zero at the boundaries. Away from the edges, towards 
the center of the doubler, the stress is the average shear stress, 
5.97MPa, as calculated by Eq. (27). The adhesive shear stress com- 
ponent, T,",, plotted in Figure 19, has maximum magnitude at two 
opposing edges of the doubler, at y=O and y = b .  Similarly, the 
adhesive shear stress component T ; ~  is maximum at the edges x = O  
and X = U ,  as shown in Figure 20. 
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STRESS ANALYSIS OF BONDED JOINTS 25 

FIGURE 20 Adhesive shear stress T:~. (See Color Plate IV). 

These plots were generated for a large number of terms (rn = 167, 
n =  101) taken in the series solution, Eq. (32). A drawback to the sine 
series solution applied to this problem is that convergence can be slow. 
This is especially so when the gradients in T& occur at  a length scale 
that is small compared with the overall size of the doubler, (e.g. ,  less 
than one-tenth size). Figure 18 shows this to be the case for this 
example problem. Consequently, a high number of terms in Eq. (32) 
needs to be used in order to converge upon an accurate solution. 
Table I11 lists values of peak adhesive shear stress for combinations of 
the number of terms taken in the double sine series solution. Values of 
(<!)max were taken at  the location x = a/2, y = 0 and (G2),,, values 
were taken at x = 0, y = b/2. 

The table shows that increasing the number of terms taken in 
m yields more accuracy in predicting (Gz)max, while an increasing 

TABLE 111 Convergence of double sine series solution; units are in MPa 

n=41 n =  101 n =  I67 n = 501 

m (<z)rnox (.;I,),,, ( C ) m a r  (<z)rnar ( < z ) m x  (%)mar (<z)mox ($z)mnr 

41 6.74 5.76 7.69 5.75 7.96 5.75 8.24 5.75 
101 6.70 7.21 7.65 7.19 7.92 7.19 8.20 7.19 
167 6.70 7.66 7.64 7.64 7.90 7.63 8.18 7.63 
501 6.70 8.13 7.64 8.10 7.91 8.09 8.19 8.09 
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26 H .  KIM AND K. T. KEDWARD 

number of terms taken in n yields a more accurate prediction of 
(<z),ax. This is due to the number of m and n terms each directly 
improving the representation of the doubler in-plane shear stress in the 
x- and y-directions, respectively, from which (T;~) , , ,~~ and (ez)max are 
computed. Obviously, a better representation of in the x-direction 
(more m terms) would result in an improved calculation of qz. Similar 
statements can be made regarding T : ~  and the number of n terms. Note 
that a higher predicted value of is calculated for a combination 
of m= 501, n=41 than for m = 501, n =  501. This is due to the nature 
of the assumed sine series solution which predicts an oscillation of the 

stress about a mean value when plotted versus y at any station in x 
(e.g., a t  x=O)  for a given number of terms taken in m. Shown in 
Figure 21, increasing the number of terms taken in n results in a 
convergence to that mean value (k., higher frequency yields lower 
amplitude), while changing the number of terms taken in m will change 
the mean value, as is reflected in Table 111. The same arguments apply 
to explain this apparent loss of accuracy when comparing values 
of (<z),,, for m =41, n = 501 with (<z)max calculated for m = 501, 
n = 501. Note that these differences, as listed in Table 111, are negligible 
at  less than 1% for the number of terms used in constructing this 

7.5 

7.0 

5 6.5 
nk 
P 

6.0 

5.5 

Number of Terms, n, Yields 
illation Amplitude and 
dued Stress at y = b12 

m = 101 
Mean = 7.19 Mpa 

at y = b12 

m = 101, n = 21 

m = 41 
ean = 6.75 Mpa 

at y = b12 
I bl2 b 

" \I For Given rn, 
a Very Large 
Number of 
Terms, n, 

Would Result 
in Mean Value Y Increasing Number 

of Terms, m, Yields 
Higher Mean Stress 
at y = b12 

y-axis 

FIGURE 21 Oscillatory profile of adhesive shear stress, Cz, at x = 0 for lower numbers 
of terms m and n used in infinite series solution. 
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STRESS ANALYSIS OF BONDED JOINTS 27 

convergence study. However, they would be higher if a lower number 
of m and n terms were taken, e .g . ,  m=21 (see Fig. 21). 

The solution from which the plots in Figures 18 to 20 are 
constructed are for m = 167, n = 101. These values for m and n were 
chosen such that roughly ten half-sine waves fit within the edge 
boundary zone, 6, where gradients in T:~  exist. The size of this 
boundary zone is indicated in Figure 18. A calculation of the bound- 
ary zone size, 6, can be made using the relationship 

In E 6=-- 
X 

where X is given by Eq. (12), and E is an arbitrarily-chosen, small- 
tolerance value close to zero, e.g., use ~=0 .01 .  Equation (36) is 
derived from the general form of the semi-infinite joint solution, which 
assumes T : ~  c( cXX. 

In regions away from the corners of the doubler, the adhesive shear 
stress profiles for T,", and T ! ~  can be accurately predicted using the 
semi-infinite joint solution approach presented in the previous section. 
The validity of performing such a calculation can be verified by ob- 
serving the T,", adhesive stress profile in Figure 19. In the regions away 
from the two opposing doubler boundaries, x = 0 and x = a, the stress 
profile, ez, is only a function of y .  Furthermore, this profile is identical 
to that which would be predicted by a semi-infinite joint calculation. 
To compute the ez(y) adhesive shear stress profile, away from the 
edges x=O and X = U ,  the boundary conditions, 7x9, = 0 at y = O  and 
y = b ,  must be applied to the assumed solution, Eq. (18), in order to 
solve for the coefficients A ,  and B,. Equation (2) is then used to 
compute the adhesive stress component acting in the x-z plane. 

1 sinh Xy 
(cash Ah - 1 )  ~ - cosh Xy+ 1 

sinh Xb 
for 6 < x < (a - 6) (37) 

Equation (37) can be rewritten for TZ(x) by replacing y with x, and b 
with a. 

1 sinh Ax 
(cosh XU - 1)- - cosh Ax + 1 

sinh Xu 

for 6 < y < (b  - 6) (38) 
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28 H .  KIM A N D  K. T. KEDWARD 

These formulae both predict a peak magnitude of shear stress, 
(7$)max = (Gz),,, = 8.33 MPa, at the same locations for which values 
listed in Table 111 were obtained. This peak magnitude of adhesive 
shear stress can be considered the exact value. Comparing this value 
with the m = 167, n = 101 case in Table 111, the values listed there are 
8% below the exact. The values of (7$)max and (GZ),,, for the 
m = 501, n = 501 case are less than 3% below the exact value. A plot of 
Eq. (37), for the bonded doubler example, is compared in Figure 22 
with the double-sine-series-based stress prediction using Eq. (32) for 
the m =  167, n =  101 case. 

The stress, rtY, in the interior region of the doubler away from 
the edges is a nominal value calculated by Eq. (27). For doublers 
of practical size, this nominal stress region is quite large compared 
with the boundary zone regions (see Fig. 18). Consequently, a self- 
equilibrating applied load, or geometry that perturbs the stress state 
within the confines of this nominal stress zone, would not affect the 
prediction of adhesive stresses a t  the doubler boundary (or vice versa). 
An example would be an antenna mount, or a hole serving as a bolted 

- 

Semi-Infinite Joint Solution 

0 2 4 6 8 10 
Y ,  mm 

FIGURE 22 Comparison of adhesive shear stress, T&, at x=a/2 as predicted by 
double sine series and semi-infinite joint solutions. 
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STRESS ANALYSIS OF BONDED JOINTS 29 

attachment point, as shown in Figure 23. A crack being repaired using 
an adhesively-bonded patch, shown in Figure 24, would also fall under 
this condition, so long as the crack geometry is smaller than the 

Geometric Feature Such 
as Hole or Hard Point Bonded Doubier 

Adhesive Stress 
Boundary Zone 

Zone of Perturbed 
Stress Due to Feature 

FIGURE 23 Bonded doubler applied to reinforce regions with holes or hard points. 

Crack in Base Structure 
Covered by Bonded Patch Bonded Patch 

Adhesive Stress 
Boundary Zone 

Zone of Perturbed 
Stress Due to Crack 

FIGURE 24 Crack repair using bonded patch. 
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30 H .  KIM A N D  K. T. KEDWARD 

patch’s overall dimensions, and the resulting perturbed stress state 
does not affect the nominal stress state in regions close to the patch 
boundaries. Note that a separate analysis must be performed to 
account for the effects of stress concentrations that arise due to the 
hole or crack geometry. Such a calculation is greatly simplified when it 
is not necessary to account simultaneously for the boundary stress 
gradients. 

Figures 23 and 24 show biaxial tension loading in addition to 
applied shear stress resultants. As mentioned previously, the tensile (or 
compressive) loads can be accounted for by using a tension-loaded 
bonded joint analysis, and superposing the results of this analysis with 
the stress state predicted by the applied shear loading. 

6. CONCLUSIONS 

A general treatment of an adhesively-bonded lap joint, loaded by 
spatially varying in-plane shear stress resultants, has been presented. 
The resulting governing partial differential equation describes the in- 
plane shear stress in one of the adherends. Solution of this equation 
generally permits the calculation of two adhesive shear stress 
components, T : ~  and T$ While analogous to the governing equation 
written for the tension-loaded lap joint case, this equation differs in 
that it is inherently two-dimensional. Additionally, since the second 
order derivative terms of the equation can be represented by the 
Laplacian Operator, V2, the governing equation can be readily applied 
to solve bonded joint problems which are more suitably described by 
cylindrical coordinates (see Fig. 5) .  

For a semi-infinite joint, a closed-form solution to the governing 
equation was obtained under the conditions that the applied loading 
varies smoothly in the direction across the width of the bonded joint 
(Le., perpendicular to the overlapping direction). This closed-form 
solution has been verified to be accurate through comparison with 
a numerical finite difference solution of the governing differential 
equation. Two cases were considered, a joint with glass/epoxy 
composite adherends, and another with carbon/epoxy composite 
adherends; both joints having identical geometry. The more compliant 
glass/epoxy joint developed a higher magnitude of cz adhesive shear 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



STRESS ANALYSIS OF BONDED JOINTS 31 

stress than the carbon/epoxy joint. In order to compute accurately the 
Gz adhesive shear stress, both contributions to G2 arising from the 
gradient in Nxy as well as the existence of an equilibrium-maintaining 
N y  stress resultant needs to be included. For the example presented, 
this G2 stress component was shown to be small relative to T,”,, even 
when high a gradient in N,, was present. 

A closed-form solution for a finite-sized bonded doubler was 
obtained using a double sine series approximation. For this case, both 
the T ; ~  and T ; ~  adhesive shear stress components are significant. In 
order to achieve an accurate sine-series-based solution, the minimum 
number of terms taken in the series should be such that at  least five 
sine wave oscillations exist within the length scale over which gradients 
in the doubler shear stress exists. Alternatively, an approximate, yet 
accurate, prediction of the maximum values of rfZ and T ; ~  stresses 
occurring at the boundaries of the doubler can be determined by 
treating the finite-sized doubler as semi-infinite. While this solution 
excludes the corner regions of the doubler, the adhesive shear stresses 
are predicted to be zero at  these locations and, thus, the discrepancy of 
this solution is inconsequential. 

In the finite-sized doubler example calculation, a boundary zone at  
the edge of the doubler was shown to exist. This boundary zone is the 
edge-adjacent region in which gradients in T& are significant and, thus, 
T& and T!? are of significant magnitude. The size of this boundary zone 
is governed by the term X in Eq. (12). For stiffer adherends, or a 
thicker adhesive layer, the boundary zone would be larger. In the 
analogous tension-loaded joint case, this X term would contain the 
Young’s Modulus of the adherends, which, in general, is several times 
larger (at least for isotropic materials) than the shear modulus. 
Therefore, the boundary zone would typically be larger for the 
tension-loaded case than the shear-loaded case. Finally, when 
numerically modeling the joint, either by Finite Difference or Finite 
Element techniques, knowledge of X aids in determining what node 
spacing is adequate enough to resolve gradients in the bond stresses 
accurately. 

In the interior region of the doubler, confined by the boundary zone, 
the adhesive stresses are null, and the doubler in-plane stress, T&, is a 
nominal value which depends only on the magnitude of the remote 
applied loading, Nxy, and the relative stiffness of the adherends. 
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32 H. KIM A N D  K. T. KEDWARD 

Within this nominal stress zone, geometric features can exist (or self- 
equilibrating loads applied), such as a crack in the base structure 
(inner adherend), or a hole passing through both adherends. If these 
features are such that the resulting perturbed stress field surrounding 
the feature is within the confines of the nominal stress zone, then the 
two problems of predicting the doubler edge stresses, and the stresses 
arising due to the geometric feature, can be treated independently. 
That is, they would not influence each other, thus greatly simplifying 
their individual treatment. 

The analysis presented, while two-dimensional, is similar enough to 
the tension-loaded case to be familiar, and remains simple in form. 
The solution presented is applicable to several joint geometries and 
applications. Additionally, since the analysis is linear, a joint under 
simultaneous biaxial tension and shear loading can be now treated by 
superposing the results of separate tension- and shear-loaded 
analytical solutions. Failure prediction within the adhesive would 
then need to account for a multi-component field of adhesive shear 
stress. There exist yet many geometries for which a closed-form 
solution is not possible. However, most of these problems can still be 
solved numerically since the governing partial differential equation 
that was derived is well suited for solution techniques based on the 
Finite Difference method. 
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NOMENCLATURE 

x, y,  z Rectangular coordinates 
r, 8, s 
2c 

Cylindrical and shell coordinates 
Overlap length of adhesive joint 
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Width of joint over which applied loading varies, or length 
of doubler in x-direction 
Length of doubler in y-direction 
Thickness of inner, outer adherend 
Thickness of adhesive layer 
Young’s modulus of inner, outer adherend in the y- 
direction 
Shear modulus of inner, outer adherend 
Shear modulus of adhesive layer 
Applied direct stress resultants (force per unit width) 
Applied shear stress resultant (force per unit width) 
Direct stress in inner, outer adherend in the y-direction 
Shear stress in inner, outer adherend 
Shear strain in inner, outer adherend 
Adhesive shear stress components acting in x-z, y-z plane 
Adhesive shear strain components acting in x-z, y-z plane 
Displacement of inner, outer adherend in x-direction 
Displacement of inner, outer adherend in y-direction 
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APPENDIX A. TENSION-LOADED LAP JOINT SOLUTION 

For the tension-loaded lap joint, as depicted in Figure 1, a simple 
closed-form solution has been developed based on shear lag theory [5 ] .  
The governing equation for this problem is 

Ny (A2) and (A3) whereX: = - Ga (& +&) and Do = - .  - 
fa ta Ef;tit, 

The solution of the governing Equation (Al) yields the outer adherend 
tensile stress 

('44) 
cash X,y ( Ny &) sinh b y  Ny + D, 

Y coshX,c 2t0 sinh X,c 2t0 A: 

The adhesive shear stress, due to N y  loading, can be calculated from 

+-- - _ -  no = 

(A4). 

This solution is for the geometry shown in Figure 1, where the joint 
has length 2c and the boundary conditions are 

oo=O Y a t y = - c  ('46) 

no=- NY a t y = c  
t o  

Furthermore, the solution is for the case of loading which is constant 
in the y-direction. When the load has a gradient in y ,  the Method of 
Undetermined Coeficients [ 141 can be used to solve the governing 
Equation (Al). This method is described in detail in Appendix B. 

APPENDIX B. METHOD OF UNDETERMINED 
COEFFICIENTS 

The Method of Undetermined Coeficients is a standard method [14] 
by which the particular solution to a nonhomogeneous ordinary 
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differential equation (ODE) is determined. Consider a second order 
ODE, similar to the form of the equation governing bonded joint 
behavior. 

d2+ 
dY 
7 - X2+ + F ( y )  = 0 

The homogeneous solution to Eq. (B l )  is 

&,(y) = A cosh Xy + B sinh Xy (B2) 

where A and B are arbitrary constants. The method presented can 
predict the particular solution when the nonhomogeneous term F(y)  
has one of three forms: (i) an nth order polynomial, (ii) the product of 
a polynomial with an exponential function, or (iii) the product of a 
polynomial with an exponential function and a sine or cosine function. 
The case of the F(y) being a second order polynomial is presented as 
an example to demonstrate the method. 

Let F(y )  be represented by a general second order polynomial. 

F ( Y )  = Fo + F l y  + F2Y2 

M Y )  = a ,  + a l y  + a2y2 

2a2 - X2(a, + a l y  + a2y2) + Fo + F l y  + F2y2 = 0 

yo : 2a2 - A2a,, + F,, = o 

033) 

A particular solution can be assumed to have the form 

(B4) 

By inserting Eqs. (B3) and (B4) into the nonhomogeneous ODE (BI), 

(B5) 
and comparing coefficients of like powers of the independent variable, 

(B6) 

037) 
1 2 y : - X a l + F 1 = 0  

Equations (B6) to (B8) can be solved to determine the coefficients of 
034). 

F2 (B9) to (B11) a o = ~ ( ~ f F ~ ) ,  al =s and a 2 = -  A2 
I 2F2 FI 
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36 H. KIM AND K. T. KEDWARD 

The total solution is the sum of the homogeneous (B2) and particular 
(B4) solutions. 

N Y )  = $ H ( Y )  + +clp(Y) 

The constant terms A and B are determined from the boundary con- 
ditions. Note that a nonhomogeneous term F(y)  of parabolic form is 
representative of the parabolic shear stress profile present in the shear 
web of an I-beam, as shown in Figure 7. 
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